摘要:“雙碳”目標(biāo)的達(dá)成,對再生水廠低碳運(yùn)行提出新的更高的要求。2021年清河第二再生水廠聚焦水區(qū)節(jié)能降耗與泥區(qū)消化產(chǎn)能提升重點(diǎn)工作,包括:發(fā)揮流域化運(yùn)營優(yōu)勢,通過流域水量聯(lián)調(diào),穩(wěn)定進(jìn)水負(fù)荷;對鼓風(fēng)機(jī)、進(jìn)水泵等重點(diǎn)耗能設(shè)備開展節(jié)能優(yōu)化,保障設(shè)備工況與工藝需求及時(shí)匹配,實(shí)現(xiàn)藥耗、電耗雙降,水區(qū)日均電耗0.353 kW·h/m3,較2020年降低20.7%,節(jié)電對應(yīng)CO2減排比例26.1%;針對泥質(zhì)與消化池氨氮負(fù)荷變化,通過保證初沉泥比例、穩(wěn)定消化負(fù)荷、調(diào)控進(jìn)泥含水率等措施,消化系統(tǒng)沼氣產(chǎn)量穩(wěn)步提升,9月—11月沼氣產(chǎn)量均值298m3/tDS,較1月—8月增幅為21.6%,沼氣發(fā)電、光伏發(fā)電、水源熱泵等三項(xiàng)可再生能源利用項(xiàng)目CO2減排比例近22%。清河第二再生水廠將繼續(xù)以節(jié)能降耗與可再生能源利用為抓手引領(lǐng)行業(yè)綠色低碳轉(zhuǎn)型。
在碳減排的驅(qū)動下,污水處理廠運(yùn)營方在保障工藝運(yùn)行效率的前提下,更加注重能源利用效率的提升。噸水能耗是衡量污水處理廠運(yùn)營管理水平的主要指標(biāo)之一,但由于區(qū)位、設(shè)計(jì)規(guī)模、處理工藝、運(yùn)行負(fù)荷及進(jìn)、出水水質(zhì)等諸多客觀因素的不同,導(dǎo)致污水處理廠的能耗呈現(xiàn)一定差異,且某些差異難以通過工藝優(yōu)化調(diào)控來彌補(bǔ),因此,能耗水平的評估需結(jié)合污水廠的實(shí)際工況。能耗高低雖不能完全體現(xiàn)污水廠的運(yùn)營水平,但決定著污水廠能源中和的實(shí)現(xiàn)路徑。根據(jù)美國能源部統(tǒng)計(jì),美國污水處理廠按照有無強(qiáng)化脫氮工藝劃分,2010年污水處理廠耗電量主要集中在0.4~0.5 kW·h/m3,均值為0.43 kW·h/m3。歐洲污水處理廠平均耗電量約為33.4 kW·h/(人口當(dāng)量·a),若1人口當(dāng)量以0.2m3/d計(jì),則折算電耗為0.46 kW·h/m3。根據(jù)唐建國介紹,德國2019年的污水處理廠耗電量為0.42 kW·h/m3。He等對我國千余座污水處理廠的能耗統(tǒng)計(jì)分析結(jié)果顯示,截至2013年,全國執(zhí)行一級A出水標(biāo)準(zhǔn)的污水處理廠平均電耗為0.35 kW·h/m3,包括北京在內(nèi)的北方污水處理廠平均電耗為0.439 kW·h/m3。
北排集團(tuán)結(jié)合首都水資源特點(diǎn),建成基于地表Ⅳ類水標(biāo)準(zhǔn)的再生水生產(chǎn)利用系統(tǒng)以及配套的污泥資源化處理處置中心,水質(zhì)與泥質(zhì)標(biāo)準(zhǔn)均處于行業(yè)領(lǐng)先水平。2021年,北排在全國污水處理行業(yè)內(nèi)率先發(fā)布碳中和規(guī)劃與實(shí)施方案。北排清河第二再生水廠(以下簡稱“清河二廠”)作為生態(tài)環(huán)境部“首批十佳城鎮(zhèn)污水處理低碳運(yùn)行典型案例”,秉持水、泥全要素資源化利用理念,統(tǒng)籌水、泥兩個(gè)生產(chǎn)板塊,聚焦水區(qū)節(jié)能降耗與泥區(qū)生物質(zhì)能開發(fā)利用等重點(diǎn)任務(wù),全力推進(jìn)碳減排工作。結(jié)合清河二廠碳減排工作具體實(shí)踐,重點(diǎn)介紹水區(qū)節(jié)能降耗與泥區(qū)沼氣產(chǎn)量提升工作以及取得的初步成效。
01 清河二廠能源使用情況
清河二廠包括再生水生產(chǎn)與污泥處理兩大業(yè)務(wù)板塊。其中水區(qū)設(shè)計(jì)處理規(guī)模為50×104m3/d,主體工藝為“改良A2O→二沉池→砂濾池→臭氧氧化→紫外消毒”。再生水出水水質(zhì)執(zhí)行北京市《城鎮(zhèn)污水處理廠水污染物排放標(biāo)準(zhǔn)》(DB 11/890—2012)的B標(biāo)準(zhǔn)。高品質(zhì)再生水主要用作清河河道生態(tài)補(bǔ)水。泥區(qū)處理能力為814 t/d(以80%含水率計(jì)),主體工藝為濃縮/預(yù)脫水+熱水解+厭氧消化+板框脫水。水區(qū)排泥經(jīng)過無害化、減量化、穩(wěn)定化處理后,進(jìn)入園林綠化等領(lǐng)域,實(shí)現(xiàn)資源化利用。
清河二廠各工藝系統(tǒng)電能消耗情況見圖1。
2021年1月—11月,清河二廠平均電耗為0.439 kW·h/m3,其中水區(qū)電耗為0.353 kW·h/m3,占全廠電單耗的80.48%。如圖1所示,水區(qū)一級預(yù)處理與二級生物處理單元能耗占比較高,對應(yīng)主要耗能設(shè)備分別為進(jìn)水泵與鼓風(fēng)機(jī),兩者電單耗合計(jì)0.188 kW·h/m3,約占水區(qū)電單耗的53%。泥區(qū)耗電量折算噸水單耗為0.086 kW·h/m3,占全廠電單耗的19.52%。其中,前端濃縮、預(yù)脫水與后端板框脫水單元能耗合計(jì)占泥區(qū)的64%。除臭系統(tǒng)對電能消耗的貢獻(xiàn)不容小覷,約占板框脫水單元電單耗的50%。
02 水區(qū)節(jié)能降耗工作進(jìn)展
清河二廠作為管網(wǎng)末端污水廠,與上游3座污水廠共同服務(wù)近150km2流域面積。受管網(wǎng)來水與上游污水廠抽升的疊加影響,其進(jìn)水流量呈現(xiàn)顯著變化。進(jìn)水負(fù)荷波動成為水區(qū)工藝調(diào)控與節(jié)能降耗需要解決的首要問題。
2.1 發(fā)揮流域水量聯(lián)調(diào)優(yōu)勢
為充分發(fā)揮北排廠網(wǎng)一體化運(yùn)營優(yōu)勢,強(qiáng)化了流域內(nèi)污水廠聯(lián)動聯(lián)調(diào)。2021年初,清河流域啟動管網(wǎng)上游清河污水廠與管網(wǎng)末端清河二廠水量聯(lián)調(diào)工作。根據(jù)流域內(nèi)水量變化情況,結(jié)合兩廠柵前液位變化規(guī)律,制定相應(yīng)的抽升策略。在清河污水廠穩(wěn)定抽升的前提下,夜間低水量或水量驟增時(shí)段,有針對性地向下游清河二廠調(diào)水或者加大抽升,以降低后者的水力沖擊負(fù)荷。流域水量聯(lián)調(diào)前、后水區(qū)處理水量的時(shí)變化如圖2所示。
由圖2可以看出,3月16日—19日(72h)流域水量聯(lián)調(diào)前,清河二廠處理水量每天存在明顯的峰谷波動,處理水量為(0.35~2.1)×104m3/h。以24 h為一個(gè)計(jì)算周期,則3個(gè)周期標(biāo)準(zhǔn)偏差均值為5054m3/h。每個(gè)周期時(shí)平均處理水量與最低水量比值的平均值為4.5。流域水量聯(lián)調(diào)后,5月1日—4日(72h)清河二廠每天的處理水量波動范圍縮小到(0.8~1.9)×104m3/h。3個(gè)24 h周期標(biāo)準(zhǔn)偏差均值為3140m3/h,較流域聯(lián)調(diào)前降低近37.9%。每個(gè)周期時(shí)平均處理水量與最低水量比值的平均值為1.6,較流域聯(lián)調(diào)前降幅達(dá)64.4%,為水區(qū)工藝設(shè)備的運(yùn)行提供了更為平穩(wěn)的水力負(fù)荷。
2.2 鼓風(fēng)機(jī)、進(jìn)水泵優(yōu)化調(diào)控
鼓風(fēng)機(jī)能耗占全廠電耗的27%,鼓風(fēng)機(jī)調(diào)控優(yōu)化是水區(qū)節(jié)能降耗的重點(diǎn)工作。堅(jiān)持風(fēng)量與水量及時(shí)匹配原則,結(jié)合鼓風(fēng)機(jī)導(dǎo)葉開度與風(fēng)量、單耗相關(guān)性分析,明確導(dǎo)葉優(yōu)選開度區(qū)間為35%~55%,投運(yùn)鼓風(fēng)機(jī)2~3臺,聚焦每天增水、減水兩個(gè)密集調(diào)控時(shí)段,開展鼓風(fēng)機(jī)精細(xì)化調(diào)控。
鼓風(fēng)機(jī)調(diào)控前,由于風(fēng)量調(diào)節(jié)難以適應(yīng)水量變化,導(dǎo)致低水量期氣量與能源浪費(fèi),而高水量期則氣量供應(yīng)不足。生物池處理水量、曝氣量與DO變化情況見圖3。
圖3生物池處理水量、曝氣量與DO變化情況
由圖3(a)可以看出,伴隨每天水量的變化,生物池好氧區(qū)中段DO呈現(xiàn)顯著波動。每天凌晨至第二天上午低水量期,DO出現(xiàn)峰值,最高可達(dá)6~8mg/L。而每天下午至夜間高水量期,DO又出現(xiàn)低值,低于0.5mg/L。鼓風(fēng)機(jī)調(diào)控后,氣量、水量分時(shí)段匹配,DO峰值明顯降低,主要集中在0.5~3.5mg/L,見圖3(b)。鼓風(fēng)機(jī)調(diào)控優(yōu)化后氣量降幅近7×104m3/d,鼓風(fēng)機(jī)電單耗日均降幅7.8%。1月—11月鼓風(fēng)機(jī)日均電單耗0.12 kW·h/m3。
參照進(jìn)水泵性能曲線,結(jié)合流域水量聯(lián)調(diào),確保低水量時(shí)段泵井液位>8m、柵前水位>3m,水泵理論效率>80%。調(diào)整進(jìn)水泵抽升策略,工頻泵與變頻泵編組運(yùn)行,利用后者降頻實(shí)現(xiàn)梯度減水,且頻率維持在45Hz以上。水力條件與抽升策略的優(yōu)化為進(jìn)水泵節(jié)電創(chuàng)造了條件。2021年進(jìn)水泵噸水電單耗與噸水提升電單耗分別維持在0.068 kW·h/m3、0.0045 kW·h/(m·m3)。
若要進(jìn)一步壓縮進(jìn)水泵單耗,需合理應(yīng)對以下兩點(diǎn)設(shè)備與工藝的挑戰(zhàn):① 由于水泵葉輪口環(huán)磨損,葉輪與泵體間隙增加,水泵內(nèi)部泄漏損失升高,導(dǎo)致水泵運(yùn)行效率下降。例如,11月更換5#工頻泵口環(huán)后,抽升水量提升近15%;② 汛期為有效管控合流制溢流污染,降雨前進(jìn)水泵執(zhí)行低液位抽升,為上游管網(wǎng)騰容,柵前液位長時(shí)段維持低位(≤1.5m),導(dǎo)致進(jìn)水泵能耗增加。
2.3 水區(qū)節(jié)能降耗初步成效
2019年—2021年水區(qū)月度電單耗見圖4。
受汛期集中降雨的影響,夏、秋季節(jié)管網(wǎng)進(jìn)廠水量較大,污染物濃度偏低,月度電單耗水平低于冬春季節(jié)。2020年初突發(fā)新冠疫情,春節(jié)期間北排各廠長期處于低負(fù)荷運(yùn)行,其間為了保障工藝穩(wěn)定運(yùn)行,以及再生水和污泥產(chǎn)品的安全性,采取了大量調(diào)控措施。受此影響,2020年清河二廠水力負(fù)荷率僅為64.8%,水區(qū)電單耗值較2019年有所上升。2021年日均水力負(fù)荷恢復(fù)到84.6%,隨著節(jié)能降耗專項(xiàng)工作的開展,水區(qū)電單耗值明顯降低。2019年、2020年、2021年1月—11月,水區(qū)日均電單耗分別為0.397、0.445、0.353 kW·h/m3,2021年電單耗較前兩年同期分別下降了11.1%和20.7%。
與此同時(shí),充分利用改良A2O工藝前置預(yù)缺氧段對后續(xù)生物脫氮除磷的促進(jìn)作用,將鼓風(fēng)機(jī)精細(xì)化控制與內(nèi)回流比調(diào)節(jié)相結(jié)合,提高內(nèi)碳源反硝化效率。2021年5月基本實(shí)現(xiàn)零碳源投加,前三季度甲醇投配率15.9mg/L,較2020年降低38.6%。以生物池沿程數(shù)據(jù)為依據(jù)分析,借助生化耦合除磷系統(tǒng)聚合氯化鋁理論投配率計(jì)算,構(gòu)建了汛期與非汛期雙模式下除磷藥劑的動態(tài)投加策略,前三季度聚合氯化鋁投配率9.7mg/L,較2020年降低19.2%。提高紫外消毒系統(tǒng)設(shè)備保障度,形成了以紫外消毒為主體、兼顧臭氧氧化衍生消毒效果、維持低劑量補(bǔ)氯的聯(lián)合消毒新方案,前三季度NaClO投配率基本維持在2mg/L,較2020年降低23.1%。
03 泥區(qū)沼氣產(chǎn)量提升工作進(jìn)展
2021年泥區(qū)完成沼氣發(fā)電機(jī)組及余熱利用系統(tǒng)建設(shè)。泥區(qū)沼氣產(chǎn)量是制約沼氣發(fā)電量的關(guān)鍵因素。泥區(qū)沼氣產(chǎn)量主要受泥質(zhì)、熱水解和消化系統(tǒng)運(yùn)行效率的影響。其中,泥質(zhì)主要指標(biāo)為污泥有機(jī)物含量、初沉污泥與剩余污泥比例。熱水解單元投運(yùn)以來嚴(yán)格按照康碧公司提供的技術(shù)參數(shù)穩(wěn)定運(yùn)行。與之相比,消化系統(tǒng)的運(yùn)行效率受進(jìn)泥負(fù)荷、溫度、酸堿比等因素的影響較為明顯。
3.1 泥質(zhì)對沼氣產(chǎn)量的影響
脂肪較碳水化合物和蛋白質(zhì),具有更高的沼氣生成潛力。通常情況下,初沉污泥脂肪含量高,而剩余污泥蛋白質(zhì)含量高。清河二廠污泥樣品元素分析結(jié)果顯示,初沉污泥N/C為0.10,剩余污泥N/C為0.15,與上述規(guī)律一致。由于目前泥區(qū)執(zhí)行優(yōu)先接收剩余污泥的策略,導(dǎo)致初沉泥量與占比均波動較大。
2021年前三季度泥質(zhì)與沼氣產(chǎn)量如圖5所示。
6月1日—7月4日,隨著初沉污泥干固占比由不足10%躍升到30%左右,沼氣產(chǎn)量明顯提升。兩者的泊松系數(shù)為0.614,呈中度正相關(guān),可以推斷水區(qū)初沉排泥量增加是促進(jìn)沼氣產(chǎn)量升高的主要原因。而隨著主汛期的到來,大水量沖擊導(dǎo)致水區(qū)排泥有機(jī)物含量顯著降低,近兩個(gè)月(7月初—8月底)剩余污泥與初沉污泥有機(jī)物含量長期處于低值,均值分別為52.7%、41.7%。初沉污泥有機(jī)物含量的降低,導(dǎo)致即使其干固占比維持在30.4%的較高水平,產(chǎn)氣量仍未見明顯提升。
3.2 消化池運(yùn)行狀態(tài)對沼氣產(chǎn)量的影響
2021年前三季度消化池進(jìn)泥量在543~905m3/d范圍波動,日均進(jìn)泥量為713m3/d,對應(yīng)停留時(shí)間近30d。進(jìn)泥含水率為90.3%~92.3%,有機(jī)負(fù)荷為0.89~1.86kgVSS/(m3·d),揮發(fā)性脂肪酸含量為1 472~3264mg/L。消化溫度維持在42℃,消化池內(nèi)氨氮均值為2032mg/L,酸堿比維持在0.1左右。泥質(zhì)與沼氣產(chǎn)量變化如圖6所示,入汛前(4月—6月)水區(qū)剩余泥排放量長期維持在高位,而初沉污泥占比較低。由于剩余污泥蛋白質(zhì)含量較高,導(dǎo)致消化池進(jìn)泥氨氮負(fù)荷與消化池內(nèi)游離氨濃度明顯上升,短期內(nèi)游離氨濃度>600mg/L。對應(yīng)時(shí)段內(nèi)游離氨抑制導(dǎo)致沼氣產(chǎn)量呈現(xiàn)下降趨勢。
3.3 泥區(qū)沼氣產(chǎn)量提升初步成效
針對上述泥質(zhì)變化與消化系統(tǒng)運(yùn)行參數(shù)波動導(dǎo)致的產(chǎn)氣量下降問題,將泥區(qū)與水區(qū)強(qiáng)化聯(lián)動,在對剩余污泥負(fù)荷合理管控的基礎(chǔ)上,提出“穩(wěn)消化負(fù)荷、控進(jìn)泥含水率、保初沉比例”的工藝優(yōu)化調(diào)控總體方針,以及3條具體措施:①優(yōu)先適當(dāng)增加稀釋水用量(6月底—8月中),提高消化池進(jìn)泥含水率,降低消化系統(tǒng)的游離氨濃度至300mg/L以下;②對消化池負(fù)荷開展精細(xì)化調(diào)控,9月消化池進(jìn)泥量標(biāo)準(zhǔn)差較4月—8月進(jìn)泥量標(biāo)準(zhǔn)差月均值降低近19%,為半年來最低值,消化進(jìn)泥負(fù)荷日趨平穩(wěn);③結(jié)合泥質(zhì)有機(jī)物含量變化,保證初沉污泥接收比例。工況Ⅰ,有機(jī)物含量60%左右,初沉污泥干基投加比需高于10%;工況Ⅱ,有機(jī)物含量50%左右,初沉污泥干基投加比需達(dá)到30%。隨著該方針、措施的執(zhí)行,以及水區(qū)排泥有機(jī)物含量的回升,沼氣產(chǎn)量穩(wěn)步提升。
2021年1月—11月的沼氣產(chǎn)量如圖7所示。9月沼氣產(chǎn)量為266m3/tDS,10月沼氣產(chǎn)量提升為293m3/tDS,11月沼氣產(chǎn)量進(jìn)一步提升為309m3/tDS。盡管11月中旬由于水區(qū)剩余排泥量波動,引發(fā)消化池產(chǎn)氣量短暫下降,待消化池進(jìn)泥負(fù)荷穩(wěn)定后,11月下旬沼氣產(chǎn)量恢復(fù)到319m3/tDS的較高水平。9月—11月沼氣產(chǎn)量達(dá)298m3/tDS,較1月—8月均值(245m3/tDS)增幅達(dá)21.6%。1月—11月沼氣產(chǎn)量均值為261m3/tDS。
04 清河二廠碳減排潛力分析
2021年清河二廠通過提質(zhì)增效與節(jié)能降耗工作的開展,碳減排潛力得到進(jìn)一步釋放。以實(shí)際處理水量42×104m3/d核算,水區(qū)全年節(jié)電對應(yīng)CO2減排量為8519t,約占2020年全廠能源消耗對應(yīng)CO2排放量的26.1%。
結(jié)合泥區(qū)現(xiàn)況261m3/tDS的沼氣產(chǎn)量,扣除熱水解自用蒸汽與冬季供暖蒸汽消耗沼氣量,可發(fā)電沼氣量以5500m3/d測算,發(fā)電量約1.0×104kW·h/d,約占全廠用電量的5.6%。預(yù)估年度節(jié)電對應(yīng)CO2減排量為2205t。即將建設(shè)的光伏發(fā)電項(xiàng)目,若按高壓并網(wǎng)方式核算,裝機(jī)容量為6.9MW,理論可發(fā)電量約2.3×104kW·h/d,自用率取83.8%,則對應(yīng)實(shí)際使用電量為1.9×104kW·h/d,約占全廠用電量的10.6%。預(yù)估年度節(jié)電對應(yīng)CO2減排量為4189t。水源熱泵系統(tǒng)運(yùn)行穩(wěn)定,廠區(qū)3臺單螺桿水源熱泵機(jī)組總裝機(jī)容量為2800kW,為廠區(qū)綜合辦公樓、車間等(總建筑面積近22000m2)提供冬季供暖、夏季制冷服務(wù),每年可節(jié)約天然氣消耗36×104m3,對應(yīng)CO2減排量約783t。以2020年全廠能源消耗對應(yīng)CO2排放量為基數(shù),上述3項(xiàng)可再生能源利用項(xiàng)目預(yù)估CO2減排量分別為6.8%、12.8%和2.4%,合計(jì)減排量約22%。
根據(jù)目前的數(shù)據(jù)推斷,隨著水區(qū)節(jié)能降耗與泥區(qū)沼氣產(chǎn)能提升工作的持續(xù)推進(jìn),以及沼氣發(fā)電、光伏發(fā)電順利并網(wǎng)投運(yùn),清河二廠CO2減排量有望達(dá)到其2020年能源消耗對應(yīng)CO2排放量的40%~50%。
05 結(jié)論
① 通過流域水量聯(lián)調(diào)有效減緩了清河二廠水力負(fù)荷波動幅度,時(shí)處理水量離散程度與峰谷水量比值較聯(lián)調(diào)前分別降低37.9%、64.4%。鼓風(fēng)機(jī)、進(jìn)水泵等主要耗能設(shè)備節(jié)能優(yōu)化效果顯現(xiàn)。2021年1月—11月,水區(qū)電單耗為0.353kW·h/m3,較2020年同期降幅為20.7%。水區(qū)節(jié)電CO2減排量約占2020年全廠能源消耗對應(yīng)CO2排放量的26.1%。此外,前三季度碳源與化學(xué)除磷藥劑投配率降幅分別為38.6%、19.2%。
② 結(jié)合泥質(zhì)、消化系統(tǒng)運(yùn)行參數(shù)與產(chǎn)氣量相關(guān)性分析,明確了泥質(zhì)有機(jī)物含量、初沉污泥占比、剩余污泥負(fù)荷等產(chǎn)氣量主要影響因素。提出提升沼氣產(chǎn)量3項(xiàng)具體舉措,自8月下旬措施實(shí)施以來,9月—11月沼氣產(chǎn)量達(dá)298m3/tDS,較1月—8月的增幅為21.6%。
③ 核算沼氣發(fā)電、光伏發(fā)電、水源熱泵等三項(xiàng)可再生能源利用項(xiàng)目CO2減排量,約占全廠2020年能源消耗對應(yīng)CO2排放量的22%。節(jié)能降耗與可再生能源利用對應(yīng)的CO2減排總量占比有望達(dá)到40%~50%。清河二廠將持續(xù)引領(lǐng)行業(yè)綠色低碳轉(zhuǎn)型。